skip to main content


Search for: All records

Creators/Authors contains: "Huang, Xiaojing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Single-crystalline nickel-rich cathodes are a rising candidate with great potential for high-energy lithium-ion batteries due to their superior structural and chemical robustness in comparison with polycrystalline counterparts. Within the single-crystalline cathode materials, the lattice strain and defects have significant impacts on the intercalation chemistry and, therefore, play a key role in determining the macroscopic electrochemical performance. Guided by our predictive theoretical model, we have systematically evaluated the effectiveness of regaining lost capacity by modulating the lattice deformation via an energy-efficient thermal treatment at different chemical states. We demonstrate that the lattice structure recoverability is highly dependent on both the cathode composition and the state of charge, providing clues to relieving the fatigued cathode crystal for sustainable lithium-ion batteries. 
    more » « less
  2. Thin-film solid-state interfacial dealloying (thin-film SSID) is an emerging technique to design nanoarchitecture thin films. The resulting controllable 3D bicontinuous nanostructure is promising for a range of applications including catalysis, sensing, and energy storage. Using a multiscale microscopy approach, we combine X-ray and electron nano-tomography to demonstrate that besides dense bicontinuous nanocomposites, thin-film SSID can create a very fine (5–15 nm) nanoporous structure. Not only is such a fine feature among one of the finest fabrications by metal-agent dealloying, but a multilayer thin-film design enables creating nanoporous films on a wider range of substrates for functional applications. Through multimodal synchrotron diffraction and spectroscopy analysis with which the materials’ chemical and structural evolution in this novel approach is characterized in details, we further deduce that the contribution of change in entropy should be considered to explain the phase evolution in metal-agent dealloying, in addition to the commonly used enthalpy term in prior studies. The discussion is an important step leading towards better explaining the underlying design principles for controllable 3D nanoarchitecture, as well as exploring a wider range of elemental and substrate selections for new applications. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Bicontinuous-nanostructured materials with a three-dimensionally (3D) interconnected morphology offer unique properties and potential applications in catalysis, biomedical sensing and energy storage. The new approach of solid-state interfacial dealloying (SSID) opens a route for fabricating bi-continuous metal–metal composites and porous metals at nano-/meso-scales via a self-organizing process driven by minimizing the system's free energy. Integrating SSID and thin film processing fully can open up a wide range of technological opportunities in designing novel functional materials; to-date, no experimental evidence has shown that 3D bi-continuous films can be formed with SSID, owing to the complexity of the kinetic mechanisms in thin film geometry and at nano-scales, despite the simple processing strategy in SSID. Here, we demonstrate that a fully-interconnected 3D bi-continuous structure can be achieved by this new approach, thin-film-SSID, using Fe–Ni film dealloyed by Mg film. The formation of a Fe–Mg x Ni bi-continuous 3D nano-structure was visualized and characterized via a multi-scale, multi-modal approach, combining electron transmission microscopy with synchrotron X-ray fluorescence nano-tomography and absorption spectroscopy. Phenomena involved with structural formation are discussed. These include surface dewetting, nano-size void formation among metallic ligaments, and interaction with a substrate. This work sheds light on the mechanisms of the SSID process, and sets a path for manufacturing of thin-film materials for future nano-structured metallic materials. 
    more » « less
  6. null (Ed.)
  7. Abstract

    Scientists have long suspected that compositionally zoned particles can form under far-from equilibrium precipitation conditions, but their inferences have been based on bulk solid and solution measurements. We are the first to directly observe nanoscale trace element compositional zonation in <10 µm-sized particles using X-ray fluorescence nanospectroscopy at the Hard X-ray Nanoprobe (HXN) Beamline at National Synchrotron Light Source II (NSLS-II). Through high-resolution images, compositional zonation was observed in barite (BaSO4) particles precipitated from aqueous solution, in which Sr2+cations as well as HAsO42−anions were co-precipitated into (Ba,Sr)SO4or Ba(SO4,HAsO4) solid solutions. Under high salinity conditions (NaCl ≥ 1.0 M), bands contained ~3.5 to ~5 times more trace element compared to the center of the particle formed in early stages of particle growth. Quantitative analysis of Sr and As fractional substitution allowed us to determine that different crystallographic growth directions incorporated trace elements to different extents. These findings provide supporting evidence that barite solid solutions have great potential for trace element incorporation; this has significant implications for environmental and engineered systems that remove hazardous substances from water.

     
    more » « less